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Abstract—The design of thin-walled beam-columns must take into account the overall instability
and the instability of component plates in the form of local buckling. This investigation is concerned
with interactive buckling of thin-walled closed cross-section beam-columns with central intermediate
stiffeners under axial compression and constant bending moment. The beams are assumed to be
simply supported at the ends. The asymptotic expansion established by Byskov and Hutchinson is
employed in the numerical calculations performed using the transition matrix method. The paper’s
aim is to contribute to the study of the equilibrium path in the post-buckling behaviour of imperfect
structures using the first order approximation. The calculations are carried out for a few closed
beam-columns.

NOTATION
a;, three-index coefficients in the nonlinear equilibrium equations by eqn (8) (Byskov and
Hutchinson, 1977)
b; width of the ith wall of column
D; plate rigidity of the ith wall
E Young’s modulus
h; thickness of the ith wall of the column
! length of the column,
m number of axial half-waves of mode n
MM, M, bending moment resultants for the ith wall
n number of mode
N number of interacting modes
N force field,
N Niys Ny, in-plane stress resultants for the ith wall
Ny, pre-buckling in-plane stress for the /th wall
NP, NP NG, in-plane stress resultants for the ith wall in the first approximation,
N% eqn (A2)
NE, eqn (A2)
0 eqn (A2)
displacement field
Uy Uy Wy displacement components of middle surface of the ith wall
W, ot e pre-buckling displacement fields
u® o\ win buckling displacement fields
A; measure of the applied pressure
A scalar load parameter
. value of 1 at bifurcation mode number »
A maximum value of 4 for imperfect column
v Poisson’s ratio (v = 0.3),
& amplitude buckling mode number »
£, imperfection amplitude corresponding to ¢,
¥ =0,10°/E dimensionless stress of mode number #, ¢ = min (¢}, 6%, %)
o¥ limit dimensionless stress for imperfect column (load-carrying capacity)
& x,/b;
i yilb:.
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1. INTRODUCTION

Intermediate stiffeners are widely used in many types of metal structures. These stiff-
eners carry a portion of the loads and sub-divide the plate element into smaller sub-
elements, thus considerably increasing the load-carrying capacity. The size and position of
intermediate stiffeners in thin-walled structures exerts a strong influence on the buckling
and post-buckling behaviour of the thin-walled structures.

Thin-walled structures consisting of plate elements having a number of buckling modes
differing from one another both in quantitative (e.g. by the number of half-waves) and in
qualitative (e.g. by global and local buckling) respects. In the case of finite displacements,
different buckling modes are interrelated, even with loads close to their critical values
(eigenvalues of a respective boundary problem). The investigation of stability of equilibrium
states requires an application of a non-linear theory that enables us to estimate the influence
of different factors on the structure’s behaviour.

One of the most important problems in the investigation of the stability of these
structures is the interaction of various buckling modes (the so-called coupled buckling).

The allowance for interactive buckling is necessary for the determination of limiting
load capacity and of the imperfection sensitivity of structures close to optimum, where the
values of critical loads are identical or nearly so. In the case when the post-buckling
behaviour of each mode taken separately is stable, their interaction may result in unstable
behaviour and, consequently, in greater imperfection sensitivity.

The concept of interactive buckling involves the general asymptotic theory of stability.
Among all versions of the general non-linear theory, the Koiter theory (1963, 1976) of
conservative systems is most popular owing to its general character and development, even
more so after Byskov and Hutchinson (1977) formulated it in a convenient way. The theory
is based on asymptotic expansions of the post-buckling path and is capable of considering
nearly simultaneous buckling modes. The expression for potential energy of the system
expands in a series relative to the amplitudes of linear modes near the point of bifurcation;
the latter generally corresponds to the minimum value of critical load (the so-called bifur-
cation load).

For the first order approximation Koiter and van der Neut (1980) have proposed a
technique in which the interaction of an overall mode with two local modes (three-mode
approach) having the same wavelength has been considered. The fundamental mode is
henceforth called “primary” and the non-trivial higher local mode (having the same wave-
length as the “primary”) corresponding to the mode triggered by overall longwave mode
is called “‘secondary”. The local secondary buckling mode is analogous to the mixed one;
thus, its consideration in the first approximation enables us to neglect the second order
mixed modes (Koiter and van der Nuet, 1980 : Kolakowski, 1993a.b; Krolak, 1990 ; Mane-
vich, 1988 ; Pignataro and Luongo, 1987a,b; Sridharan and Peng, 1989).

Numerical calculations by Kolakowski (1988, 1989b,c) have proved that the inter-
action of local modes having considerably different wavelengths is either very weak or does
not occur at all. Moreover, one can see that the interaction of two global modes of buckling
is very weak or does not occur at all. According to the assumptions mode in Byskov and
Hutchinson’s theory (1977), local buckling modes do not interact explicitly. However, the
interaction occurs through the interaction of each of them with the global mode. It can be
noticed that the Euler buckling can interact with an even number of local modes—symmetric
or antisymmetric, but the flexural-torsional mode only with pairs of symmetric and anti-
symmetric modes [see Sridharan and Ali (1986), Pignataro and Luongo (1987a,b), and
Kolakowski (1989a) for more detailed analysis]. The problem of the interaction of the
global mode with the local ones is of great significance. This effect is contained in the term
ol (u;, 1) where j, k = 2,3 (where the index is 1 for the global mode, 2 for the primary
local buckling mode and 3 for the secondary local mode having the same number of half-
waves as the primary one) in coefficients a,, # 0 of the equations (8), and in the others
ay; = 0. In order to find the most unfavourable second local buckling mode, several first
values of local stresses, corresponding to a given number of half waves m, must be deter-
mined. Then the coefficients a;;, for each of these values are calculated.
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In the energy expression for the first order approximation the coefficients of the cubic
terms &, &3, &,E3 and &,E.¢, are the key terms governing the interaction. In the case of
disregarding the interaction between overall mode, the primary local mode and the sec-
ondary local mode, the coefficient of the &,&,&; term in the energy expression vanishes. In
the analysis of the column with doubly symmetric cross-sections the coefficients of the
£,&5 and &, &5 terms—the coefficients @, of the non-linear system (8)—vanish.

In some cases an improper selection of mode, even if a few of them are considered,
may lead to an overestimation of the construction’s load-carrying capacity; also, the
consideration of the two-mode approach may sometimes be misleading and yield false
conclusions. This can be accomplished only by means of non-linear analysis (Kolakowski,
1989a).

A more comprehensive review of the literature concerning interactive buckling has
been done by Ali and Sridharan (1988), Benito and Sridharan (1984-85), Manevich (1985,
1988), Moellmann and Goltermann (1989), Pignataro and Luongo (1987a,b), Sridharan
and Ali (1985, 1986), Sridharan and Peng (1989), Tvergaard (1973) and Kolakowski
(1987a,b, 1989a—c).

The importance of the minimum rigidity of the intermediate stiffeners required to
restrict buckling to the plate elements was studied by Timoshenko (1921), Barbré (1936),
Cox and Riddell (1949), Desmond (1977), Hoglund (1978), Konig (1978) and others. The
test specimens, experimental works and comparisons made with design rules of plates and
open cross-section structures were detailed by Hoon et al. (1993) and Bernard et al. (1993).

Mathematical models tend to a higher precision and closer approximation of real
structures, which enable us to analyse more exactly the phenomena occurring during and
after the loss of stability. Therefore, a precise determination of eigenvalues and eigenmodes
for different buckling modes is an importent factor enabling a more detailed analysis of the
structure’s behaviour.

A rapid development of science and technology, as well as a widespread use of
computer-aided methods (CAD;CAM), enables improved structure design; in accordance
with the theory of catastrophes, these structures show singularities of increasing order. The
safety and reliability requirements of thin-walled structures are also more rigorous and can
be matched only if investigations are carried out continuously (Kolakowski, 1994).

In the present paper, the post-buckling behaviour of thin-walled structures with inter-
mediate stiffeners in the elastic range under axial compression and a bending moment is
examined on the basis of Byskov and Hutchinson’s method, with co-operation between all
the walls of the structures being taken into account. The study is based on the numerical
method of the transition matrix by Unger (1969), Kldppel and Bilstein (1971) and Bilstein
(1974) using the Godunov orthogonalization method (Bidermann, 1977). Each wall has a
central intermediate stiffener.

The influence of number of half-waves m for assumed imperfections on the load-
carrying capacity is neglected, as distinct from the papers by Manevich (1982) and Kolakow-
ski (1988, 1989a-c, 1993a.b).

The most important advantage of this method is that it enables us to describe a
complete range of behaviour of thin-walled structures from global to local stability. In the
solution obtained, the effects of interaction of certain modes having the same wavelength,
the shear lag phenomenon and also the effect of cross-sectional distortions are included.

Since for the first order approximation the limit load is always lower than the minimum
value of a bifurcational load obtained in the linear analysis, this approximation can be used
as a lower bound estimation of load-carrying capacity.

2. STRUCTURAL PROBLEM

Long thin-walled prismatic beam-columns of length /, composed of plane, rectangular
plate segments interconnected along longitudinal edges, simply supported at both ends, are
considered.
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The cross-section of this structure, composed of several plates, as well as local Cartesian
coordinate systems are presented in Fig. 1.

A plate model is adopted for the beam-column. For the ith wall precise geometrical
relationships are assumed to take into account both out-of-plane and in-plane bending:

E{x = ui,x + Os(ulzx + Uiz.x + "viz,x)
&y = Ui, + 0.5, +0],+wh,),
ixy = )"ixy = ui,y + U[, X + ui.xul,y + v, xvi,y + wi,xwi, y?
iy = — wi,xx y Xy & T wi,y)’ s Zixy T T Wi, xy* (1)
The differential equilibrium equations resulting from the virtual work principle cor-
responding to expressions (1) for the ith wall can be written as follows :
Nix, x + Nixy,y + (Nixui, x), x + (Niyui,y),y + (N[xyui, x),y + (Nixyui,y), x = 09
Niy,y + Nt‘xy, x + (Nixvi.x),.\' + (Nl'yvi,y)‘y + (Nixyvi,x),y + (Nixyvi,y),x = 03
D,-VVW[ - (Nixwi,x),x - (Niywi,y).y - (Nixywi.x),y - (N[xywi.y),x =0. (2)
The solution of these equations for each plate should satisfy kinematic and static
conditions at the junctions of adjacent plates and boundary conditions at the ends x = 0
and x = / (see Appendix A).
The non-linear problem is solved by the asymptotic Byskov and Hutchinson method

(1977). Displacement U and force N fields are expanded in power series in the buckling
mode amplitudes, &, (divided by the thickness of the first component plate) :

N = RO +&,R0 4, 3

i+1

Yisr

Fig. 1. Prismatic plate structure and the local coordinate system.
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where the pre-buckling fields are U , N\ and the buckling modes U , N . In eqns (3).
¢, 1s the amplitude of the nth buckling mode. The range of indices is [1, N], where N is the
number of interacting modes.

By substituting the expansion (3) into equations of equilibrium (2), junction conditions
(Al) and boundary conditions (A3), boundary problems of zero and first order can be
obtained. The zero approximation describes the pre-buckling state, while the first approxi-
mation, i.e. the linear problem of stability which enables us to determine the critical value
and the buckling mode, is reduced to a system of homogeneous differential equations.

The plates with linearly varying stresses along their widths are divided into several
strips under uniformly distributed compression (tension) stresses (Fig. 2). As distinct from
the finite strips method, the exact transition matrix method is used in this case.

The pre-buckling solution consisting of homogeneous fields is assumed as:

ulo = —X,'A[,
v = vy,
w? =0, 4)

where A, is the actual loading. This loading is specified as the product of a unit loading
system and a scalar load factor A,.

As the intermediate stiffeners are taken into consideration, numerical difficulties con-
nected with convergance of the presented problem appear contrary to the papers by
Kolakowski (1989a, 1993a, b). These difficulties induce the necessity of introducing new
orthogonal functions in the sense of boundary conditions for two longitudinal edges (see
Appendix B):

a” = NFO(—v)(Eh) = (14+2v2A)07) +v(1 +viIA — 2A)u?,

B = NAO(1+v?)/(Eh) = 0.5(1 —v)[(1 =224, + (1 +viA,— 2A) ),

>

e = u,
571(") = Uz(n),
e =w,
F =iy,
g" = =MD, = wi, +wwi,

/’_lz(n) = = Qiy*(n)/Di = wt(,nr;m] + (2 - v)wzg,’?.jm (5)

P,

Fig. 2. Discretization of a linear distribution of stresses by means of finite strips.
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where (.., = &(..)/é, (..)., = 0(..)/on,. Considering the above system of differential
equations (2), the first approximation may be written in the form:

a" = (1=v2) A", —0.5(1—v)(1 +vAA, — AA)E, —0.5(1 —v)(1 +2v2A)d,

et Lo

b = — &+ (3—v)AAET, —vd®, +v(1 —v)).AdL,,
& = [26 /(1 —v) — (1+v2A;— 2.A)dR] /(1 - 274),
dw = [a” —v(1 +viA,—1A)E7] /(1 +2v2A),

e =7

i

7 5(
fo=gn—ve'l,

g = b —2(1—v)F¥,
hz(n;; = —y (") —('1) e —E/’l b2/1A el(ns)s/D (6)

i8n lgss

The first order solutions may be formulated as follows:

= Ay sin™2
B = B (n) cos mnfb",

& = C™(n) cos mnle,’

d" = D" (n)sin mfthb,- ’

" = EP(n)sin f V,

"= F"(n)sin IC

g” = G{"(y)sin n;b

A = H{" () sin mnfb". o)

AD B® CW pw E® FM G® and H™ (with the mth harmonic) are initially unknown
functions that will be determined by the numerical method of transition matrices. The
system of ordinary differential equations for the first order with appropriate junction
conditions for adjacent plates is solved by the transition matrices method using numerical
integration of the equilibrium equations in the transverse direction in order to obtain a
relation between state vectors on two longitudinal edges, applying the Godunov orthog-
onalization method (Bidermann, 1977).

The omission of the displacements of the fundamental state implies that we ignore the
difference between configurations of the undeformed state and the fundamental state, and
we may consequently regard the previously defined displacements »,v! as additional ones
from the fundamental state to the adjacent state.

The assumed fields for the first order non-linear approximation ensure compatibility
of the corner displacements of the constituent plates. Thus, v = 0 at the ends, implying that
the plates are restrained in their plane at the ends. The point of major interest is that this
method can be employed to study the effect on the post-buckling stiffness of enforcing the
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compatibility of the displacements in the cross-sectional plane at the corners [for more
detailed analysis see Sridharan and Graves-Smith (1981)].

The global buckling mode occurs at m = 1 and the local modes at m > 1 (with b, <« /).
Each buckling mode is normalized so that the maximum normal displacement is equal to
the thickness of the first constituent wall.

At the point where the load parameter J reaches its maximum value for an imperfect
structure (secondary bifurcation or limit points), the Jacobian of a non-linear system of
equations (Byskov and Hutchinson, 1977):

A A
<l—q)f,+awg“,-g“j+---=é, at J=12,...,N (8)
Ay A

J

1s equal to zero.

The expression for a,, is given in Appendix C. The formulae for the post-buckling
coefficients a;;, involve only the buckling modes. The result of integration along x indicates
that the post-buckling coefficients a,;, are zero when the sum of the wave numbers associated
with the three modes (m,+m;+m,) is even.

3. ANALYSIS OF RESULTS

The theory presented in this paper, as applied to the full strain tensor of thin-walled
plates (1), shows a very good compatibility in comparison with earlier results obtained
by Kolakowski (1989a,c, 1993a,b), having omitted the terms 0.5x7., 0.5v7, and
(u; u; v, ;) in expressions for g, &,i2¢,, = ., respectively.

The long thin-walled prismatic beam-columns of square cross-section (Fig. 3a), with
corners bevelled at an angle of 45° (Fig. 3b) reinforced with V- and C-shaped central
intermediate stiffeners (Fig. 3¢ and d, respectively) have been performed. Bevelled corners
and intermediate stiffeners were made up of plates whose width is b,. Detailed numerical

' 2 | 2
A | A |
| TN
| I l
e :— &8 _____:____ | _
h, | h
M= | » 2 [
\ 4 IF‘: 1 v t I"C"l/
b, A
1 P bll »

Fig. 3. Types of closed cross-section considered.
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calculations have been carried out for several different sizes of cross-sectional reinforce-
ments of thin-walled beam-columns subject to uniform and eccentric compression.

In the pre-buckling state, the beam-column is subjected to linearly variable stresses
caused by axial forces and bending moments which are dealt with as external loads. The
load distribution can be described by the ratio of stress p(y) at point *‘/” of cross-section
to the greatest compressive stress, pm., = p;. applied to the bottom flange (Fig. 3). In the
present paper the load distribution is defined as the ratio of stresses in the top flange (point
2) to maximum stresses in the bottom flange. 2 = p,/pma. = P2/p1. Stress p; is considered
positive if it is a compressive stress. In order to compare load capacities of different cross-
sections (Fig. 3a—f), identical distributions of external stress are assumed; this implies a
change in the values of compressive force and bending moment.

The calculations are carried out for a beam-column of the following geometrical
dimensions (Fig. 3a):

b/by =10, h/h, =10, [/b, =275, b/h = 100.

Intermediate stiffeners are modelled with plates, their dimensions being
byh, = {4,6,8,10, 12} ; correspondingly, for bevelled corners b/h, = {9,18,27,36}. Fig-
ures 4-9 present dimensionless critical stress, ¢, as a function of the number of half-waves,
m, for the above values of b /h,. As a comparison, the results are shown as obtained for a
“smooth” square column [i.e. b/h, = 0, Figs 4(0)-9(0)]. A modification of a square cross-
section (Fig. 3a) accomplished by corner bevelling (Fig. 3b) results in the expected increase
in the local critical stress value owing to the increase of flexural rigidity of component
plates, and in a slight decrease in global critical stress value (up to about 10%) due to the
reduced moment of inertia of the cross-section. The introduction of intermediate stiffeners
increases the flexural rigidity of plate elements and, consequently, also the local critical
stress values. Global critical stress values for all analysed types of intermediate stiffeners
remain virtually unchanged because of the small variations in the moment of inertia of the
cross-section. Regarding global stability, a less favourable case is bevelled corners, which
reduce the moment of inertia of the cross-section to a greater extent than intermediate
stiffeners.

Columns reinforced with intermediate stiffeners may show two local minima for two
different local buckling modes (Figs 6-9). The first one refers to the smaller number of half-
waves (m = 7-13) and the second one to the greater number of half-waves (m = 66-77) as
compared with the column without reinforcement. In particular cases the values of these
minima for local buckling modes can be almost equal [Figs 6(12), 7(10), 8(8) and 9(8)].

o ®-36, v-27 v-18 0 -9m -0

T T T T T T T T

'''''' NoN A
N~ e
e —— ;;,‘2 g

e f——

Fig. 4. Dimensionless stress o} carried by the number of half-waves m for uniform compression
column with cross-section presented in Fig. 3b.
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o, ®-36, v-27 v-18 0 -9m -0

14 T T T T T T T T T

AN \.\
T e
e S S N, §
- ‘n\\'\' v — ,.——ﬂ?‘
o x \ R [

Fig. 5. Dimensionless stress o carried by the number of half-waves m for eccentrically compressed
column (= = 0) with cross-section presented in Fig. 3b.

o, 0-12 v-10 @8 v-6 m-4a-0

9 T T T T T v T

Fig. 6. Dimensionless stress o carried by the number of half-waves m for uniform compression
column with cross-section presented in Fig. 3c.

Each minimum, however, corresponds to a different local buckling mode. Primary and
secondary local buckling modes referring to these two minima for a column under uniform
compression (« = 1) (b,/h, = 12) are shown in Figs 10 and 11. Special attention should be
paid to the fact that critical stress values referring to the second minimum are nearly equal
for both local modes. In the paper of Bernard er al. (1993), the local buckling modes
presented in Figs 10 and 11 are named as follows: 6% = 1.114 (s = 13), local distortional
buckling mode (Fig. 10); o% =2.033 (m = 66), local antisymmetric mode (Fig. 11);
o = 2.042 (m = 66), local symmetric mode (Fig. 11). The local mode ¥ = 1.650 (m = 13)
illustrated in Fig. 10, which may be named the local bending mode, is analogous to that of
a “smooth” column, ¢% = 0.52336 (m = 27) [Figs 6(0) and 8(0)] [see Sridharan and Ali
(1986), and Kolakowski (1989a, ¢)].

For b,/h, = 6, the intermediate stiffeners do not practically contribute to any increase
in local critical stress values corresponding to the second minimum (m = 66-77 ; Figs 6-9).
The theory presented here enables us to carry out an analysis of all buckling modes for
intermediate stiffeners of different shapes and flexural rigidities; this can help in their
rational design. Too small sizes of intermediate stiffeners [e.g. V-shaped stiffeners, b/h, = 4;
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o, 0-12 v-10 8 v-6 w-4a-0

14 T — T T T T T

10 20 30 40 50 60 70 80 90
m
Fig. 7. Dimensionless stress ¢ carried by the number of half-waves m for eccentrically compressed
column (= = 0) with cross-section presented in Fig. 3c.

o, 0-12 v-10 -8 v-6 m-44-0

T T T T T T T

Fig. 8. Dimensionless stress ¥ carried by the number of half-waves m for uniform compression
column with cross-section presented in Fig. 3d.

Fig. 6(4)], with their low flexural rigidity, cause virtually no increase in the critical stress
values. Higher eccentricity of compressive force may increase local critical stress values,
o%, by up to 20% due to higher stability coefficients of the webs and top flange (Table 1;
compare cases | and 8; 4 and 9; 5 and 10; 6 and 11) ; moreover, it strongly influences the
global stress values, ¥. For eccentric compression (= = 0), global critical stresses are

almost doubled (Table 1; compare cases 1 and 8; 4 and 9).

Buckling modes for eccentrically compressed beam-columns of sizes discussed above

are presented in Figs 12 and 13.

Detailed numerical calculations aiming at the determination of the load-carrying
capacity of the structures with imperfections are carried out for the following column

dimensions:
b /b =1, h/h,=1, b, =215, b/h =100,

having assumed the following imperfections: |&,| = 1.0, |&,| = 0.2, & = 0.0.
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0-12 v-10 -8 v-6 m-4a-0

T T T T T T T T

Fig. 9. Dimensionless stress o carried by the number of half-waves m for eccentrically compressed
column (= = 0) with cross-section presented in Fig. 3d.

/
|

e e -

~

1.11446

=L

\

'\

R

Fig. 10. Two local modes at m = 13 for uniform compression column.

- 1.64983

e

2.03345
~ ~
S .o _ - \
\
\
X
;TN2.04194
/
/
m = 66 4

Fig. 11. Two local modes at m = 66 for uniform compression column.
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Table 1. Load-carrying capacity for beam-column with cross-section presented in Fig. 3c at imperfections
Gl =1.0,1& = 02,4 =00

by/h, K ot o} o¥ aXak

1 0 1 2.13500(1) 0.36154(27) 0.52336(27) 0.8265
2 8 1 2.07383(1) 1.11446(13) 1.64983(13) 09111
3 8 i 2.07383(1) 2.03345(66) 2.04194(66) 0.6661
3a 8 1 2.07383(1) 2.04194(66) 2.03345(66) 0.6650
4 10 1 2.04690(1) 1.50197(11) 2.19070(11) 0.9081
S 10 1 2.04690(1) 2.15782(70) 2.17214(70) 0.6894
5a 10 i 2.04690(1) 2.17214(70) 2.15782(70) 0.6881
6 12 1 2.01722(1) 1.91049(10) 2.71318(10) 0.8777
7 12 1 2.01722(1) 2.25643(72) 2.27299(72) 0.7199
Ta 12 1 2.01722(1) 2.27299(72) 2.25643(72) 0.7185
8 0 0 4.23660(1) 0.46196(32) 1.05586(32) 0.7409
9 10 0 4.05580(1) 1.98805(12) 4.95936(12) 0.8837
10 10 0 4.05580(1) 2.34130(72) 3.49264(72) 0.7021
1 12 0 3.99622(1) 2.52131(10) 6.27080(10) 0.8922
12 12 0 3.99622(1) 2.44594(74) 3.62682(74) 0.7005

4.95936

1.98805

2.34130

3.49264
Fig. 13. Two local modes at m = 72 for eccentrically compressed column (= = 0).
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In each case the signs of the imperfections have been chosen in the most unfavourable
fashion, i.e. so that ¢¥would assume its minimum value [see Manevich (1982) and Kolakow-
ski (1987a, 1989a, ¢) for a more detailed discussion].

The local mode imperfections always promote an interaction between the local modes
and the global mode.

Tables 1 and 2 present the values of dimensionless critical stresses, o (the cor-
responding numbers of half-waves, m, are given in parentheses) and the load-carrying
capacity to minimum critical stress ratios, o¥a . The cases of uniform (= = 1) and eccentric
( = 0) compression are analysed. It should be noted that in the determination of load-
carrying capacity imperfections are assumed for the global mode {, and for only one of the
local buckling modes , (6% and ¢% in Tables I and 2).

In Table 2 a result is given for a beam-column with corners bevelled at 45°, its
dimensions being b,/h; = {27, 36}. Itis evident that when critical stress values become close
to each other, the imperfection sensitivity increases (compare cases 2 and 3 in Table 2);
this is substantiated by earlier papers of the first author. A decrease of limit load in the
presence of imperfections is very significant, especially if local imperfections are present.
Attention should be paid to the proper selection of local buckling modes (compare cases 2
and 2a; 3 and 3a). This can be accomplished only by means of non-linear analysis.

Table 1 presents results of calculations carried out for V-stiffened beam-columns, its
dimensions being b,/#, = {8, 10, 12}. These data allow us to conclude that an interaction of
global buckling mode with local symmetric mode and local antisymmetric mode (cases 3a,
5a, 7a) is more dangerous than with the local distortional mode and the local bending mode
(cases 2, 4, 6) or with the local antisymmetric and local symmetric modes (cases 3, 5, 7).

In the case of eccentric compression the global stress values, o, are significantly higher
than under uniform compression, while the limit stress values, o¥/a¥ are similar (compare,
for example, cases 3 and 5 in Table 2) ; this means that the imperfection sensitivity increases
together with the eccentricity of compressive force.

The interaction of global buckling mode with two local modes corresponding to the
second local minimum (m = 72-74) is more dangerous than with local modes related to
the first minimum (m = 10-12) (compare cases 9 and 10 and cases 11 and 12 in Table 1).

Results obtained for intermediate C-stiffeners are analogous to those for V-stiffeners.

The modification of cross-section (Fig. 3b—f) makes the load-carrying capacity greater
than in the case of a “smooth” beam-column. Much regard has to be paid, however, to the
proper choice of flexural rigidity of plate elements and to the cross-sectional moment of
inertia, as well as to the correct determination of their load-carrying capacity.

The present theory enables us to carry out a full analysis of interactive buckling in
beam-columns subject to eccentric compression, making allowance for global pre-buckling
bending ; at this point it differs from the approximate analysis presented by Roorda (1988),
where only global bending was considered.

4. CONCLUSIONS

The interactive buckling analysis of thin-walled closed beam-columns with central
intermediate stiffener on each plate under axial compression and constant bending moment

Table 2. Load-carrying capacity for beam-column with cross-section presented in Fig. 3b at imperfections

1E1=1.0.1& =02,8 =00

by/h K ot af a¥ alion

1 0 1 2.13500(1) 0.36154(27) 0.52336(27) 0.8265

2 27 1 2.05107(1) 1.12413(52) 1.18228(52) 0.7422

2a 27 1 2.05107(1) 1.18228(52) 1.12413(52) 0.7942
3 36 1 1.91603(1) 1.62832(60) 1.74362(60) 0.7124

3a 36 1 1.91603(1) 1.74362(60) 1.62832(60) 0.7654
4 0 0 4.23660(1) 0.46196(32) 1.05586(32) 0.7409

5 36 0 3.80155(1) 1.74269(64) 3.37900(64) 0.7275
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carried out by means of the transition matrix method has been presented. Global and local
modes are described by plate theory. Intermediate stiffeners are found to exert a strong
influence on the local buckling modes.

The applied method describing buckling of thin-walled structures from global to local
loss of stability can be easily adopted in computer-aided systems (CAD/CAM).

The present analysis was completed by including the second approximation in order
to investigate post-buckling in the case where the first order interaction is weak.
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APPENDIX A

The kinematical and static continuity conditions at the junctions of adjacent plates may be written in the
form:

| =wl ",

wiq|" = wi|” cos (@) —u|” sin (@),
iy |® = wy|” sin (@) +v,| T cos (o),
Wit |“ =wi, ",

My =M, =0,
NE, "= NEI* cos (@) — Q%] sin(g) = 0,
Q1" +NE* sin (@) —QX| " cos{p) = 0,
N¥ " =NEIT =0, (A1)
where
M, = = Di(w, ,, +vw, ),
N} =N, +Nyo  + Nyt o,
Y= Now A Now = Diwi e+ 2—vw, o,
N =N+ Nyt + Ny,
P=Pisr (AD)

The boundary conditions referring to the simply supported beam-columns at both ends are assumed to be:

1 1
Z; fzw',vv(»x, =0,y)dy; = ZE fN (x,=Ly)dy, =Y N0,

J i

vlx, =0,y) =vi{x;,=Ly)=0,
wi(x; =0.p) = wi(x, =1Ly) =0,
My(x, =0,p) =M, (x,=1Ly)=0. (A3)

APPENDIX B

The conditions resulting from the variational principle for two longitudinal edges on which a relation
between the state vectors is derived using the modified transition matrices method may be written in the form:
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' 4
J- N¥ovdx, = [ [Ny +Nv ,+ N v Jovdx, =0

0 JOo

] "/
[ N¥ oudx, j [Noy+ Nt + N, u, ] oudx; =0
Ji

0

4 4
| M Ow;  dx; = -—J Di(w; yp+vw, ) ow, dx, =0

0

o r

j Qréwdx, J [N, A N,y — DU, s+ 2= V)W, ]} Swdx = 0. (B1)
0 0

i

I

APPENDIX C

The coefficients in the non-linear equilibrium equations (8), a,,, are given by the following expression [see
Byskov and Hutchinson (1977) for more detailed analysis] :

ay = [(T(” -1 |(Um» (](/))+25(i) -, . (L“’”,U‘J’)]/(2Um . 8(1)). (Cl)



